





# [ICLR 2025] MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra

Liang Wang<sup>1,2</sup>, Shaozhen Liu<sup>1</sup>, Yu Rong<sup>3</sup>, Deli Zhao<sup>3</sup>, Qiang Liu<sup>1,2</sup>, Shu Wu<sup>1,2</sup>, Liang Wang<sup>1,2</sup>

<sup>1</sup>Institute of Automation, Chinese Academy of Sciences <sup>2</sup>University of Chinese Academy of Sciences <sup>3</sup>DAMO Academy, Alibaba Group

12 March 2025



#### Molecular Representation Learning

Translate the molecular structures into vectorized molecular representations to understand and predict various molecular properties, interactions, chemical reactions.

$$h = f(molecule)$$

Chemical Reaction, Retrosynthesis Planning, Intermolecular Interactions, Target-Ligand Interaction

Challenges of supervised molecular representation learning

- (1) Scarcity of labeled data.
- (2) Poor out-of-distribution generalization capability.

#### **Pre-training** Self-supverised Backbone Head Tasks GNNs or Transformers Molecular Database **Pre-training Tasks** Transfer Fine-tuning MPP DDI New S + 🔊 So + Jrs Chemical Pre-trained Models ... DTI Downstream Molecular Datasets **Downstream Tasks**

#### **Pipeline of Molecular Representation Pre-training**

Pre-trained on large-scale
 unlabeled molecules.

✓ Fine-tuned on various

downstream tasks.

#### • Denoising as learning a force field.

- It is not feasible to learn molecular force field directly, since it is either unknown or expensive to evaluate.
- Alternative: approximate the data-generating force field with one that can be cheaply evaluated.
- Prove that the denoising objective is equivalent to learning the molecular force field:
  - Molecular structure:  $\mathbf{x} \in \mathbb{R}^{3N}$
  - The structure follows the Boltzmann distribution:  $p_{\text{physical}}(\mathbf{x}) \propto \exp(-E(\mathbf{x}))$
  - Force field:  $\nabla_{\mathbf{x}} \log p_{\text{physical}}(\mathbf{x}) = -\nabla_{\mathbf{x}} E(\mathbf{x})$
  - Approximate  $p_{physical}$  with a mixture of Gaussians centered at the known equilibrium structures

$$p_{\text{physical}}(\tilde{\mathbf{x}}) \approx q_{\sigma}(\tilde{\mathbf{x}}) \coloneqq \frac{1}{n} \sum_{i=1}^{n} q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x_{i}})$$
  
where  $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x_{i}}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x_{i}}, \sigma^{2} I_{3N}).$ 

[1] Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, 4 / 24 Jonathan Godwin. "Pre-Training via Denoising for Molecular Property Prediction." In *ICLR*, 2023

- Denoising as learning a force field. (Cont.)
  - Learning the force field now yields a score-matching objective:

 $\mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}})}[\|\operatorname{GNN}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}}\log q_{\sigma}(\tilde{\mathbf{x}})\|^{2}]$ 

• According to reference [1], minimizing the following two objectives is equivalent:

 $J_1(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}})}[\|\operatorname{GNN}_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}}\log q_{\sigma}(\tilde{\mathbf{x}})\|^2]$ 

 $J_{2}(\theta) = \mathbb{E}_{q_{\sigma}(\widetilde{\mathbf{x}},\mathbf{x})}[\|\operatorname{GNN}_{\theta}(\widetilde{\mathbf{x}}) - \nabla_{\widetilde{\mathbf{x}}}\log q_{\sigma}(\widetilde{\mathbf{x}} \mid \mathbf{x}) \|^{2}]$ 

• Thus, the objective in Eq. (1) is equivalent to:

$$\mathbb{E}_{q_{\sigma}(\widetilde{\mathbf{x}},\mathbf{x})}[\|\operatorname{GNN}_{\theta}(\widetilde{\mathbf{x}}) - \nabla_{\widetilde{\mathbf{x}}}\log q_{\sigma}(\widetilde{\mathbf{x}} \mid \mathbf{x}) \|^{2}] = \mathbb{E}_{q_{\sigma}(\widetilde{\mathbf{x}},\mathbf{x})}\left[\|\operatorname{GNN}_{\theta}(\widetilde{\mathbf{x}}) - \frac{\mathbf{x} - \widetilde{\mathbf{x}}}{\sigma^{2}} \|^{2}\right]$$

**Establishing the relationship between 3D geometries and the energy states of molecular systems** is an effective pathway to learn 3D molecular representations.



[1] Yuyan Ni, Shikun Feng, Wei-Ying Ma, Zhi-Ming Ma, Yanyan Lan. "Sliced Denoising: A Physics-Informed Molecular Pre-Training Method." In ICLR, 2024 6 / 24

## Motivation





# MolSpectra



$$\mathcal{L} = \beta_{\text{Denoising}} \mathcal{L}_{\text{Denoising}} + \beta_{\text{MPR}} \mathcal{L}_{\text{MPR}} + \beta_{\text{Contrast}} \mathcal{L}_{\text{Contrast}}$$

#### **Effectiveness of Molecular Spectra in Training from Scratch**

Table 1: Performance (MAE  $\downarrow$ ) when training from scratch on QM9 dataset.

| Task        | $\mu$ | lpha      | homo  | lumo  | gap   | $R^2$     | ZPVE  | $U_0$ | U     | H     | G     | $C_v$                      |
|-------------|-------|-----------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|----------------------------|
| Units       | (D)   | $(a_0^3)$ | (meV) | (meV) | (meV) | $(a_0^2)$ | (meV) | (meV) | (meV) | (meV) | (meV) | $(\frac{cal}{mol\cdot K})$ |
| w/o spectra | 0.029 | 0.071     | 29    | 25    | 48    | 0.106     | 1.55  | 11    | 12    | 12    | 12    | 0.031                      |
| w/ spectra  | 0.027 | 0.049     | 28    | 24    | 43    | 0.084     | 1.45  | 10    | 11    | 10    | 10    | 0.030                      |

#### **Effectiveness of Molecular Spectra in Representation Pre-Training**

Table 2: Performance (MAE $\downarrow$ ) on QM9 dataset. The compared methods are divided into two groups training from scratch and pre-training then fine-tuning. The best results are highlighted in bold.

|                | $\mu$ | $\alpha$  | homo  | lumo  | gap   | $R^2$     | ZPVE  | $U_0$ | U     | H     | G     | $C_v$                       |
|----------------|-------|-----------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-----------------------------|
|                | (D)   | $(a_0^3)$ | (meV) | (meV) | (meV) | $(a_0^2)$ | (meV) | (meV) | (meV) | (meV) | (meV) | $(\frac{cal}{mol \cdot K})$ |
| SchNet         | 0.033 | 0.235     | 41.0  | 34.0  | 63.0  | 0.070     | 1.70  | 14.00 | 19.00 | 14.00 | 14.00 | 0.033                       |
| EGNN           | 0.029 | 0.071     | 29.0  | 25.0  | 48.0  | 0.106     | 1.55  | 11.00 | 12.00 | 12.00 | 12.00 | 0.031                       |
| DimeNet++      | 0.030 | 0.044     | 24.6  | 19.5  | 32.6  | 0.330     | 1.21  | 6.32  | 6.28  | 6.53  | 7.56  | 0.023                       |
| PaiNN          | 0.012 | 0.045     | 27.6  | 20.4  | 45.7  | 0.070     | 1.28  | 5.85  | 5.83  | 5.98  | 7.35  | 0.024                       |
| SphereNet      | 0.025 | 0.045     | 22.8  | 18.9  | 31.1  | 0.270     | 1.12  | 6.26  | 6.36  | 6.33  | 7.78  | 0.022                       |
| TorchMD-Net    | 0.011 | 0.059     | 20.3  | 17.5  | 36.1  | 0.033     | 1.84  | 6.15  | 6.38  | 6.16  | 7.62  | 0.026                       |
| Transformer-M  | 0.037 | 0.041     | 17.5  | 16.2  | 27.4  | 0.075     | 1.18  | 9.37  | 9.41  | 9.39  | 9.63  | 0.022                       |
| SE(3)-DDM      | 0.015 | 0.046     | 23.5  | 19.5  | 40.2  | 0.122     | 1.31  | 6.92  | 6.99  | 7.09  | 7.65  | 0.024                       |
| <b>3D-EMGP</b> | 0.020 | 0.057     | 21.3  | 18.2  | 37.1  | 0.092     | 1.38  | 8.60  | 8.60  | 8.70  | 9.30  | 0.026                       |
| Coord          | 0.016 | 0.052     | 17.7  | 14.7  | 31.8  | 0.450     | 1.71  | 6.57  | 6.11  | 6.45  | 6.91  | 0.020                       |
| MolSpectra     | 0.011 | 0.048     | 15.5  | 13.1  | 26.8  | 0.410     | 1.71  | 5.67  | 5.45  | 5.87  | 6.18  | 0.021                       |

#### **Effectiveness of Molecular Spectra in Representation Pre-Training**

Table 3: Performance (MAE $\downarrow$ ) on MD17 force prediction (kcal/mol/ Å). The methods are divided into two groups: training from scratch and pre-training then fine-tuning. The best results are in bold.

|             | Aspirin                      | Benzene                      | Ethanol | Malonal<br>-dehyde           | Naphtha<br>-lene | Salicy<br>-lic Acid | Toluene | Uracil |
|-------------|------------------------------|------------------------------|---------|------------------------------|------------------|---------------------|---------|--------|
| SphereNet   | 0.430                        | 0.178                        | 0.208   | 0.340                        | 0.178            | 0.360               | 0.155   | 0.267  |
| SchNet      | 1.350                        | 0.310                        | 0.390   | 0.660                        | 0.580            | 0.850               | 0.570   | 0.560  |
| DimeNet     | 0.499                        | 0.187                        | 0.230   | 0.383                        | 0.215            | 0.374               | 0.216   | 0.301  |
| PaiNN       | 0.338                        | -                            | 0.224   | 0.319                        | 0.077            | 0.195               | 0.094   | 0.139  |
| TorchMD-Net | 0.245                        | 0.219                        | 0.107   | 0.167                        | 0.059            | 0.128               | 0.064   | 0.089  |
| SE(3)-DDM*  | 0.453                        | -                            | 0.166   | 0.288                        | 0.129            | 0.266               | 0.122   | 0.183  |
| MolSpectra  | <b>0.211</b><br><b>0.099</b> | <b>0.109</b><br><b>0.097</b> | 0.090   | <b>0.139</b><br><b>0.077</b> | 0.085            | <b>0.093</b>        | 0.075   | 0.095  |

#### Sensitivity Analysis of Patch Length, Stride, and Mask Ratio

 Table 4: Sensitivity of patch length and stride.

| patch length | stride | overlap ratio | homo | lumo | gap  |
|--------------|--------|---------------|------|------|------|
| 20           | 5      | 75%           | 15.9 | 13.7 | 28.0 |
| 20           | 10     | 50%           | 15.5 | 13.1 | 26.8 |
| 20           | 15     | 25%           | 16.1 | 13.6 | 28.1 |
| 20           | 20     | 0%            | 15.7 | 13.5 | 27.5 |
| 16           | 8      | 50%           | 16.0 | 13.4 | 27.6 |
| 30           | 15     | 50%           | 15.9 | 14.0 | 28.1 |

Table 5: Sensitivity of mask ratio.

| mask ratio | homo | lumo | gap  |
|------------|------|------|------|
| 0.05       | 15.7 | 13.4 | 29.7 |
| 0.10       | 15.5 | 13.1 | 26.8 |
| 0.15       | 15.7 | 13.5 | 28.0 |
| 0.20       | 16.0 | 13.6 | 28.1 |
| 0.25       | 16.3 | 13.5 | 28.0 |
| 0.30       | 16.2 | 13.7 | 29.0 |

#### **Ablation Study of Spectral Modalities**

#### Table 7: Ablation of spectral modalities.

| UV-Vis       | IR           | Raman        | homo | lumo | gap  |
|--------------|--------------|--------------|------|------|------|
| $\checkmark$ | $\checkmark$ | $\checkmark$ | 15.5 | 13.1 | 26.8 |
| -            | $\checkmark$ | $\checkmark$ | 15.8 | 13.3 | 27.1 |
| $\checkmark$ | -            | $\checkmark$ | 16.6 | 14.1 | 28.9 |
| $\checkmark$ | $\checkmark$ | -            | 16.1 | 13.9 | 28.3 |

Visualization of Attention Patterns and Learned Spectra Representations in SpecFormer



Figure A2: (a-c) Attention maps from three attention heads in SpecFormer. Different heads model distinct dependencies. (d) t-SNE visualization of the spectra representations produced by Spec-Former.







### Thank you for your attention!

Contact : liang.wang@cripac.ia.ac.cn