

Liang Wang^{1,2}

TL;DR

To achieve effective fine-tuning of pre-trained molecular encoders, we propose a parameter-efficient incontext tuning method, named Pin-Tuning, for fewshot molecular property prediction (FSMPP).

Motivation

Pilot study: ineffective fine-tuning of pre-trained molecular encoders

different paradigms: train-from-scratch,

pretrain-then-freeze, and pretrain-then-finetune.

The results consistently demonstrate that while pretraining outperforms training from scratch, the current methods do not yet effectively facilitate fine-tuning of pre-trained molecular encoders.

The following question arises:

How to effectively adapt pre-trained molecular encoders to downstream tasks, especially in few-shot scenarios?

The Reasons of the Observation

- The imbalance between the abundance of tunable parameters and the scarcity of labeled molecules.
- The lack of contextual perceptiveness in the encoders.

anilla MPP framewor

Figure 2. (a) The vanilla encoder-classifier framework for MPP. (b) The framework widely adopted by existing FSMPP methods, containing a pre-trained molecular encoder and a context-aware property classifier. (c) Our proposed framework for FSMPP, in which we introduce a Pin-Tuning method to update the pre-trained molecular encoder followed by the property classifier. (d) The details of our proposed Figure 1. Comparison of molecular encoders trained via Pin-Tuning method for pre-trained molecular encoders.

I. RUC-AUC sci

Model	Tox21		SIDER		MUV		ToxCast		PCBA	
	10-shot	5-shot								
Siamese	80.40	_	71.10	-	59.96	_	_	_	_	-
ProtoNet	74.98	72.78	64.54	64.09	65.88	64.86	68.87	66.26	64.93	62.29
MAML	80.21	69.17	70.43	60.92	63.90	63.00	68.30	67.56	66.22	65.25
TPN	76.05	75.45	67.84	66.52	65.22	65.13	69.47	66.04	67.61	63.66
EGNN	81.21	76.80	72.87	60.61	65.20	63.46	74.02	67.13	69.92	67.71
IterRefLSTM	81.10	-	69.63	-	49.56	-	_	-	_	-
Pre-GNN	82.14	82.04	73.96	76.76	67.14	70.23	75.31	74.43	76.79	75.27
Meta-MGNN	82.97	76.12	75.43	66.60	68.99	64.07	76.27	75.26	72.58	72.51
PAR	84.93	83.95	78.08	77.70	<u>69.96</u>	<u>68.08</u>	79.41	76.89	73.71	72.79
GS-Meta	<u>86.67</u>	<u>86.43</u>	<u>84.36</u>	<u>84.57</u>	66.08	64.50	<u>83.81</u>	<u>82.65</u>	<u>79.40</u>	<u>77.47</u>
Pin-Tuning	91.56	90.95	93.41	92.02	73.33	70.71	84.94	83.71	81.26	79.23
Δ Improve.	5.64%	5.23%	10.73%	8.81%	4.82%	3.86%	1.35%	1.28%	2.34%	2.27%

Pin-Tuning: Parameter-Efficient In-Context Tuning for Few-Shot Molecular Property Prediction

Qiang Liu ^{1,2,†}	Shaozhen Liu 1	Xin Sun ³	Shu Wu ^{1,2}	Li
¹ NLPR, MAIS, CASIA	² Sch. AI, UCAS	³ USTC	[†] Correspondence	

Pin-Tuning: Parameter-Efficient In-Context Tuning

Experiments

ores (%) on benchmark datasets.

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)

.iang Wang^{1,2,3}

Experiments (Cont.)

the Tox21 dataset.

III. Representation visualization.

Figure 4. Molecular representations encoded after Fine-Tuning.

Figure 5. Molecular representations encoded after Pin-Tuning.