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TL;DR

Existing methods for learning 3D molecular representa-
tions focus on modeling molecular energy states from
classical mechanics, overlooking quantum mechanical
effects such as discrete energy levels. We propose
MolSpectra, which leverages multi-modal molecular
spectra for pre-training, thereby integrating quantum me-
chanical knowledge into molecular representations.

Background
I. Denoising as learning a force field.
Denoising has emerged as a prominent pre-training objec-
tive in 3D molecular representation learning. This approach
is physically interpretable due to its proven equivalence to
learning the molecular force field.

LDenoising(M) = Ep(x|x0)p(x0)∥GNNθ(x) − (x − x0)∥2

≃ Ep(x)∥GNNθ(x) − (−∇xE(x))∥2,

Essentially, it reveals that establishing the relationship be-
tween 3D geometries and the energy states is an effective
pathway to learn 3D molecular representations.
II. Prior works only model classical mechanics by
denoising, overlooking the energy level structures
from a quantum mechanical perspective, which
can be measured using molecular spectra.
III. Different types of molecular spectra reveal dis-
tinct energy level structures. For instance, IR spectra
reveal vibrational energy levels, whereas UV-Vis spectra re-
veal electronic energy levels.

Main Contributions
I. We propose MolSpectra, introducing molecular spectra
into molecular representation learning for the first time.
II. We propose SpecFormer as an expressive multi-
spectrum encoder, along with the masked patches recon-
struction objective for spectral representation learning.

MolSpectra

I. Conceptual view of MolSpectra, leveraging both conformation and spectra for pre-training.
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II. Overview of the MolSpectra pre-training framework.
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MolSpectra comprises three sub-objectives: the denoising objective and the masked patches reconstruction
objective guide the representation learning of the 3D and spectral modalities respectively, and the contrastive
objective aligns the representations of both modalities.

MolSpectra (Cont.)

III. Illustration of intra-spectrum (left) and inter-
spectrum (right) dependencies.
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Experiments

I. Performance (MAE↓) on benchmark datasets.

µ homo lumo gap U0 U H G
(D) (meV) (meV) (meV) (meV) (meV) (meV) (meV)

EGNN 0.029 29.0 25.0 48.0 11.00 12.00 12.00 12.00
PaiNN 0.012 27.6 20.4 45.7 5.85 5.83 5.98 7.35
SphereNet 0.025 22.8 18.9 31.1 6.26 6.36 6.33 7.78
TorchMD-Net 0.011 20.3 17.5 36.1 6.15 6.38 6.16 7.62
Transformer-M 0.037 17.5 16.2 27.4 9.37 9.41 9.39 9.63
SE(3)-DDM 0.015 23.5 19.5 40.2 6.92 6.99 7.09 7.65
3D-EMGP 0.020 21.3 18.2 37.1 8.60 8.60 8.70 9.30
Coord 0.016 17.7 14.7 31.8 6.57 6.11 6.45 6.91
MolSpectra 0.011 15.5 13.1 26.8 5.67 5.45 5.87 6.18

II. Ablation of spectral modalities.

UV-Vis IR Raman homo lumo gap
! ! ! 15.5 13.1 26.8
- ! ! 15.8 13.3 27.1
! - ! 16.6 14.1 28.9
! ! - 16.1 13.9 28.3

Each spectral modality contributes differently, with the IR
spectrum having the largest contribution.
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