

Rethinking Graph Masked Autoencoders through Alignment and Uniformity

TL;DR

In this work, we prove that the node-level reconstruction in Graph Masked Autoencoders (GraphMAE) implicitly performs context-level Graph Contrastive Learning (GCL). Based on this, we identify the limitations of GraphMAE from the perspective of alignment and uniformity. To overcome them, we propose AUG-MAE equipped with an easy-tohard adversarial masking strategy and an explicit uniformity regularizer.

Motivation

Background

- Graph self-supervised learning can be categorized into two distinct types, contrastive methods (i.e., GCL) and generative methods (e.g., GraphMAE).
- Despite the recent empirical success of GraphMAE, there is still a lack of sufficient understanding regarding its efficacy. Additionally, it remains unknown whether there exists a connection between GraphMAE and GCL.

The following Questions arise:

• Why is GraphMAE effective? Are GraphMAE and GCL completely different methods, or do they share any commonality?

Theoretical Understanding of GraphMAE

We perform an analysis and give an insight that generative methods, such as GraphMAE, perform implicit context-level GCL.

Theorem GraphMAE's nodel-level reconstruction loss \mathcal{L}_{SCE} can be lower bounded by the context-level alignment loss \mathcal{L}_{Align}^{c} :

$$\mathcal{L}_{\mathsf{SCE}}(h) \ge \frac{\gamma}{4} \mathcal{L}_{\mathsf{Align}}^{\mathsf{c}}(h) - \frac{\gamma}{2} \varepsilon + \mathsf{const}$$
(1)

 Following this, a small GraphMAE's reconstruction loss implies a small context-level alignment loss, which indicates that GraphMAE implicitly aligns the representations of positive context pairs.

Generate a differentiable binary mask vector of nodes:

$$prob_{adv} = \mathcal{M}_{\Phi}(\mathcal{G})$$
$$\boldsymbol{m}_{i} = \sigma(\frac{1}{\tau}(\log(\frac{prob_{adv,i}}{1 - prob_{adv,i}} + (\epsilon_{0} - \epsilon_{1}))))$$

Update the parameters of the mask generator:

$$\Phi^{\star} = \arg \max_{\Phi} (\mathcal{L}_{\text{SCE}}(\mathcal{G}; \Theta, \Phi) - \lambda_1 \sin(\frac{\pi}{N} \sum_{i=1}^N m_i)^{-1})$$
Figure by G

Update the parameters of GraphMAE:

$$\Theta^{\star} = \arg\min_{\Theta} \mathcal{L}_{\mathrm{SCE}}(\mathcal{G}; \Theta, \Phi)$$

Easy-to-Hard Training

$$egin{aligned} lpha_{ ext{adv}}(t) &= lpha_0 + \Delta lpha(t) = lpha_0 + (rac{t}{T})^\eta \cdot (lpha_T - lpha_0) \ prob(t) &= (1 - lpha_{ ext{adv}}(t)) \cdot prob_{ ext{rand}} + lpha_{ ext{adv}}(t) \cdot prob_{ ext{adv}}(t) \end{aligned}$$

Explicit Uniformity Regularizer

$$\Theta^{\star} = \arg\min_{\Theta} (\mathcal{L}_{SCE}(\mathcal{G}; \Theta, \Phi) + (1 - \alpha_{adv})\lambda_2 \mathcal{L}_{Uni}(\mathcal{G}; \Theta))$$

Experiments

I. Performances of node classification.

	Method	Cora	PubMed	Ogbn-arxiv	PPI	Reddit	Corafull	Flickr	WikiCS
stive	DGI	82.3 ± 0.6	76.8 ± 0.6	70.3 ± 0.2	63.8 ± 0.2	94.0 ± 0.1	48.2 ± 0.5	45.0 ± 0.2	64.8 ± 0.6
	MVGRL	83.5 ± 0.4	80.1 ± 0.7	-	-	-	52.6 ± 0.5	-	64.8 ± 0.7
	GRACE	81.9 ± 0.4	80.6 ± 0.4	71.5 ± 0.1	69.7 ± 0.2	94.7 ± 0.1	45.2 ± 0.1	-	68.0 ± 0.7
	BGRL	82.7 ± 0.6	79.6 ± 0.5	$\underline{71.6\pm0.1}$	73.6 ± 0.2	94.2 ± 0.1	47.4 ± 0.5	39.4 ± 0.1	65.5 ± 1.5
	InfoGCL	83.5 ± 0.3	79.1 ± 0.2	-	-	-	-	-	-
	CCA-SSG	$\underline{84.0\pm0.4}$	81.0 ± 0.4	71.2 ± 0.2	$73.3\ {\pm}0.2$	95.1 ± 0.1	$\underline{53.5\pm0.4}$	49.1 ± 0.1	$67.4\ \pm0.9$
ative	SeeGera	82.8 ± 0.3	79.2 ± 0.3	71.2 ± 0.3	73.4 ± 0.3	95.2 ± 0.2	52.0 ± 0.4	49.4 ± 0.5	65.8 ± 0.2
	MaskGAE	82.6 ± 0.3	$\underline{81.0\pm0.3}$	71.2 ± 0.3	73.9 ± 0.3	95.4 ± 0.1	52.2 ± 0.1	49.1 ± 0.4	66.0 ± 0.2
	GraphMAE	84.0 ± 0.6	80.9 ± 0.4	71.3 ± 0.6	$\underline{74.1\pm0.4}$	$\underline{95.8\pm0.4}$	53.3 ± 0.4	$\underline{49.5\pm0.5}$	$\underline{70.6\pm0.9}$
	AUG-MAE	$\textbf{84.3} \pm \textbf{0.4}$	$\textbf{81.4}\pm\textbf{0.4}$	$\textbf{71.9}\pm\textbf{0.2}$	$\textbf{74.3} \pm \textbf{0.1}$	$\textbf{96.1} \pm \textbf{0.1}$	$\textbf{57.6} \pm \textbf{0.3}$	$\textbf{50.3} \pm \textbf{0.2}$	$\textbf{71.7} \pm \textbf{0.6}$

II. Performances of graph classification.

	Method	IMDB-B	IMDB-M	PROTEINS	COLLAB	MUTAG	REDDIT-B
astive	Graph2vec	71.10 ± 0.54	50.44 ± 0.87	73.30 ± 2.05	-	83.15 ± 9.25	75.78 ± 1.03
	InfoGraph	73.03 ± 0.87	49.69 ± 0.53	74.44 ± 0.31	70.65 ± 1.13	89.01 ± 1.13	82.50 ± 1.42
	GraphCL	71.14 ± 0.44	48.58 ± 0.67	74.39 ± 0.45	71.36 ± 1.15	86.80 ± 1.34	$\underline{89.53\pm0.84}$
	JOAO	70.21 ± 3.08	49.20 ± 0.77	74.55 ± 0.41	69.50 ± 0.36	87.35 ± 1.02	85.29 ± 1.35
	GCC	72.0	49.4	-	78.9	-	89.8
	MVGRL	74.20 ± 0.70	51.20 ± 0.50	-	-	$\underline{89.70\pm1.10}$	84.50 ± 0.60
	InfoGCL	75.10 ± 0.90	$\underline{51.40\pm0.80}$	-	80.00 ± 1.30	$\textbf{91.20}\pm\textbf{1.30}$	-
	GraphMAE	$\underline{75.30\pm0.59}$	51.35 ± 0.78	$\underline{75.30\pm0.52}$	$\underline{80.32\pm0.42}$	88.19 ± 1.26	87.83 ± 0.25
ative	AUG-MAE	$\textbf{75.56} \pm \textbf{0.61}$	$\textbf{51.80} \pm \textbf{0.86}$	$\textbf{75.83} \pm \textbf{0.24}$	$\textbf{80.48} \pm \textbf{0.50}$	88.28 ± 0.98	87.98 ± 0.43

II. Performances of representation alignment and uniformity.

are 2. l_2 distances between positive representations of Cora learned by GCL, GraphMAE, and AUG-MAE.

Figure 3. Representation distributions of Cora on S^1 learned by GCL, GraphMAE, and AUG-MAE.